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Research interests

» Geomagnetically induced currents (GICs)
» Power system stability & SSR
» Power System Inertia
» Renewable energy integration (wind and PV)
- Reliable operation of various energy mix (ROCOF, efc)

- Considerations for non-renewable energy-based generation
- Decentralised generation and OPT

» Power definitions/theory
» Grid frequency disturbance
» BESS

» R&D of power systems measurements
o TEI
- Power system monitoring
- GIC (DMM & neutral)




Fundamental concepts

» Electrical voltage: Electromotive force between two points

» Electrical current: Flow of electrons
» Electrical Power: Rate at which electrical energy is consumed

Resistor Switch

Conductor A A ~

| |

(- charge) (+ charge)

Battery

Fig. 1: Basic electrical circuit [1-a]

[1-a] https://za.pinterest.com/pin/413134965798848376/



Generalized perspective of complex systems

SCOPE & SYNERGY | : a system DOES something; it fulfills a function.

w.is more than the sum of its components

ENSEMBLE INTERDEPENDENCE
: a system is an : the components
assembly of are mutually
interconnected interdependent.

components Each component
(each component is part of the

in itself is a system, but it also
system) affects the system

SPECIFICITY
: each system possesses : each component
a degree of permanence fulfills a specific
function

Fig. 1: Features of a power system. An example of a complex system [1]

[1] Lecture slides. EEE 4126F — Energy System & Grids |l



Ensemble of interconnected components




Power system model- Without RE
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Fig. 2. Multi-generation power system model [2]

[2] P. Jankee, D. T. O. Oyedokun and H. K. Chisepo, "Dynamic Response of Power Systems
With Real GICs: Impact on Generator Excitation Control," in IEEE Transactions on Power
Delivery, vol. 37, no. 6, pp. 4911-4922, Dec. 2022, doi: 10.1109/TPWRD.2022.3162881



Typical Power system model with RE
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Fig. 3. Multi-generation power system model. Adapted from [2]

[2] P. Jankee, D. T. O. Oyedokun and H. K. Chisepo, "Dynamic Response of Power Systems
With Real GICs: Impact on Generator Excitation Control," in IEEE Transactions on Power
Delivery, vol. 37, no. 6, pp. 4911-4922, Dec. 2022, doi: 10.1109/TPWRD.2022.3162881



Power System Frequency

Q
Q
Q
Q
Q

+

A parameter that has no physical existence [3] ra\ AN
Vo / \ / \\
It is a property of a signal TN T
I /| \/ \/
Measure of oscillation [4] S —
Number cycles in one second (unit Hz) fol il freawney  Tporod

Representative of something physical such as a machine speed [3]

Load Losses Power
\f Generated \P_rchange
DEMAND Hertz
58 62

Fig. 4: lllustration of balance between demand and generation Frequency [5]

[3] H. Kirkham, W. Dickerson and A. Phadke, "Defining Power System Frequency," 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland,
OR, USA, 2018, pp. 1-5, doi: 10.1109/PESGM.2018.8586583.

[4] Bevrani, Hassan, Hémin Golpira, Arturo Roman Messina, Nikos Hatziargyriou, Federico Milano, and Toshifumi Ise. "Power system frequency
control: An updated review of current solutions and new challenges." Electric Power Systems Research 194 (2021): 107114.

[5] http://www.ee.unlv.edu/~eebag/4.pdf 8



Power System Stability

Keep the lights on

Keep them bright enough

Keep them steady

Reliably ride through contingencies

v v Vv Vv

Fig. 5: lllustration load requirement Vs available power to
keep lights on [6]

Definition:

Power system stability is the ability of an electric power system, for a given initial
operating condition, to regain a state of operating equilibrium after being subjected to
a physical disturbance, with most system variables bounded so that practically the
entire system remains intact. [7]

[6] https://fineartamerica.com/featured/5-leadership-hanging-lightbulb-allan-swart.html?product=poster

[7] N. Hatziargyriou et al., "Definition and Classification of Power System Stability — Revisited & Extended," in IEEE Transactions on
Power Systems, vol. 36, no. 4, pp. 3271-3281, July 2021, doi: 10.1109/TPWRS.2020.3041774. 9



Classification of Power System

Stability

Power system stability
. Converter- Rotor angle Voltage Frequency
Mt # s oy driven stability stability stability stability
. . Fast Slow ' Small- Large- Small-
ENpsicios] osloosl interaction interaction mssat disturbance | | disturbance disturbance
Short term Long term Short term Long term

Fig. 6: Classification of Power System Stability [7]
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Power System Frequency Stability

Initial slope of dedline is determined by system inertia (i.e.
cumulative inertial response of all generation)
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Fig.7: An illustration of power system frequency response to a major loss of generation. (IEEE © 2013 )
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Variability in RE availability

Case in point: 24 hrs solar PV vs load profile

Normalized Profile (p.u)
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Fig. 8: Normalized load consumption and solar PV generation profile

[8] M. R. Maghami, J. Pasupuleti, and C. M. Ling, “A Static and Dynamic Analysis of Photovoltaic Penetration into MV
Distribution Network,” Processes, vol. 11, no. 4, p. 1172, Apr. 2023, doi: 10.3390/pr11041172.
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Power Quality

» Measure of electrical current and voltage relative to

ideal/expected conditions
> Voltage level, voltage spikes, and variations, voltage dips/sags
> Harmonic distortions

» Causes: Overloads, insufficient reactive power support,
protection malfunction, harmonics, network inadequacy, etc

4 Impact: Possible equipment (grid + consumer) damage

13



Power System Reliability

RELIABILITY

ADEQUACY

Power system
reliability describes the
ability of the system to
perform its intended
function.

ADEQUACY -describes the
ability of the power system

to:

Supply load demand

Satisfy operational constraints
(considering scheduled
outages and unscheduled
outages that could reasonably
be expected).

SECURITY

SECURITY - describes
the ability of the power
system to withstand a
pre-determined set of
disturbances.

Fig. 9: Definition of Power system reliability [1]
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Adequacy

System Adequacy

- Ability of the power system to convert primary fuels into electricity and
transfer it to end-user in a sustainable manner

Generation Adequacy
- Availability of enough generating (and import) capacity to meet demand

15



Adequacy Cont’d

Network Adequacy

Implies adequacy of:
- Transmission network
- Distribution network
- Cross-border interconnections

Market Adequacy

- Ability of the market to establish and maintain an efficient link
between producers and consumers of electricity.

16



Security

Security of electricity supply

/\

T

Access to
primary
fuels

System Market
Adequacy | | Adequacy

.

Fig. 10: Definition of Power system security [1]

|

Reliability of power
system operation in
real-time
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National Grid: Live

The National Grid is the electric power transmission network for Great Britain

Time ® Price @ Emissions @ Demand & Generation € Transfers @
= +
A N I|’ | - A - Al AJ
1:10pm £61.86/M\Wh 172g/kWI 35.60W 32.3GW 3.30W
Generation 40.3% fossil fuels 9.3% interconnectors
H Coa ® 0.000W  0.0% O Belgium @ 0.760W  2.1%
- B G 9 14.33CW 40.3% [ France @ 0.96CW  2.7%
1 Ireland @ -0.81CW -2.3%
31.9% renewables MNetherlands @ 0.98CW  2.8%
Generation ] Norway @ 1.400W  3.9%
—_— Solar @ 8.020W 22.6%
32.3GW
90.7% B wind@ 3.220W  9.1%
W Hydroelectric @ 0110w 0.3%
18.5% other sources 0.0% storage
Note: percentages are relative to demand, so will B Nuclear @ 521GW 14.7 [ Pumped storage @ 0.00GW 0.0%
exceed 100% if power is being exported W Biomass @ 1.37GW  3.9% [ Battery storage @ —CW —%

https://grid.iamkate.com/
https://www.gridwatch.templar.co.uk/download.php



National Grid: Live

The National Grid is the electric power transmission network for Great Britain
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National Grid: Live

The National Grid is the electric power transmission network for Great Britain

Time ® Price @ Emissions € Demand @ B Generation € . Transfers @
1:10pm £61.86/M\Wh 172g/kWh 35.60W - 32.30W 3.3GW
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Challenges in modern power systems:
Opportunities for R &

» Increasing CIGs
» Increasing role of power electronics
» Unbalance and harmonics

» Transmission and distribution thermal limit
management

» UCT patents and R&D projects

21
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